50 research outputs found

    Building Resilience in Closed-Loop Supply Chains through Information-Sharing Mechanisms

    Get PDF
    In this paper we reflect on the role of information sharing on increasing the resilience of supply chains. Specifically, we highlight the lack of studies addressing this relevant topic in closed-loop supply chains. Then, we introduce the works covered by the Special Issue “Information Sharing on Sustainable and Resilient Supply Chains” to investigate the relationships between information sharing and resilience in sustainable supply chains.Universidad de Sevilla V PPIT-USDICAR-UniCT (Dpto. Ing. Civil y Arqu. Univ. Catania) Plan de investigación Departamental 2016-201

    Effect of Industry 4.0 on Education Systems: An Outlook

    Get PDF
    Congreso Universitario de Innovación Educativa En las Enseñanzas Técnicas, CUIEET (26º. 2018. Gijón

    The value of regulating returns for enhancing the dynamic behaviour of hybrid manufacturing-remanufacturing systems

    Get PDF
    Several studies have determined that product returns positively impact on the dynamics of hybrid manufacturing-remanufacturing systems, provided that they are perfectly correlated with demand. By considering imperfect correlation, we observe that intrinsic variations of returns may dramatically deteriorate the operational performance of these closed-loop supply chains. To cope with such added complexity, we propose a structure for controlling the reverse flow through the recoverable stock. The developed mechanism, in the form of a prefilter, is designed to leverage the known positive consequences of the deterministic component of the returns and to buffer the harmful impact of their stochastic component. We show that this outperforms both the benchmark push system and a baseline solution consisting of regulating all the returns. Consequently, we demonstrate that the operation of the production system is greatly smoothed and inventory is better managed. By developing a new framework for measuring the dynamics of closed-loop supply chains, we show that a significant reduction in the net stock, manufacturing, and remanufacturing variances can be achieved, which undoubtedly has implications both for stock reduction and production stabilization. Thus, the known benefits of circular economy models are strengthened, both economically and environmentally

    The effect of returns volume uncertainty on the dynamic performance of closed-loop supply chains

    Get PDF
    We investigate the dynamics of a hybrid manufacturing/remanufacturing system (HMRS) by exploring the impact of the average return yield and uncertainty in returns volume. Through modelling and simulation techniques, we measure the long-term variability of end-product inventories and orders issued, given its negative impact on the operational performance of supply chains, as well as the average net stock and the average backlog, in order to consider the key trade-off between service level and holding requirements. In this regard, prior studies have observed that returns may positively impact the dynamic behaviour of the HMRS. We demonstrate that this occurs as long as the intrinsic uncertainty in the volume of returns is low —increasing the return yield results in decreased fluctuations in production, which enhances the operation of the closed-loop system. Interestingly, we observe a U-shaped relationship between the inventory performance and the return yield. However, the dynamics of the supply chain may significantly suffer from returns volume uncertainty through the damaging Bullwhip phenomenon. Under this scenario, the relationship between the average return yield and the intrinsic returns volume variability determines the operational performance of closed-loop supply chains in comparison with traditional (open-loop) systems. In this sense, this research adds to the still very limited literature on the dynamic behaviour of closed-loop supply chains, whose importance is enormously growing in the current production model evolving from a linear to a circular architecture

    Learning-based scheduling of flexible manufacturing systems using ensemble methods

    Get PDF
    Dispatching rules are commonly applied to schedule jobs in Flexible Manufacturing Systems (FMSs). However, the suitability of these rules relies heavily on the state of the system; hence, there is no single rule that always outperforms the others. In this scenario, machine learning techniques, such as support vector machines (SVMs), inductive learning-based decision trees (DTs), backpropagation neural networks (BPNs), and case based-reasoning (CBR), offer a powerful approach for dynamic scheduling, as they help managers identify the most appropriate rule in each moment. Nonetheless, different machine learning algorithms may provide different recommendations. In this research, we take the analysis one step further by employing ensemble methods, which are designed to select the most reliable recommendations over time. Specifically, we compare the behaviour of the bagging, boosting, and stacking methods. Building on the aforementioned machine learning algorithms, our results reveal that ensemble methods enhance the dynamic performance of the FMS. Through a simulation study, we show that this new approach results in an improvement of key performance metrics (namely, mean tardiness and mean flow time) over existing dispatching rules and the individual use of each machine learning algorithm
    corecore